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Reactions of carbonyl compounds in photoexcited states have
attracted much attention, and hence, the precedented examples
are well classified.1 However, we herein report a new type of
photochemical carbon skeletal rearrangement ofR-hydroxym-
ethylatedR,â-unsaturated carbonyl compounds (1). Molecules
of type 1 selectively rearrange to 1,4-dicarbonyl compounds2,
which are highly desirable intermediates for the synthesis of
cyclopentenones and five-membered heterocycles2 (Scheme 1).
The substrates1 were easily prepared by the Baylis-Hillman
reaction ofR,â-unsaturated carbonyl compounds with aldehydes.3,4

Therefore, the overall transformation can be regarded as 1,4-
addition of acyl anions derived from the aldehydes to the starting
R,â-unsaturated carbonyl compounds.5 This new and synthetically
interesting pathway to 1,4-dicarbonyl compounds is the subject
of this paper.

The enones1was irradiated with a high-pressure mercury lamp,
and the 1,4-dicarbonyl compounds2were isolated simply by silica
gel chromatography through carbon skeletal rearrangement with
almost complete consumption of1 (<8% recovery).6 The present
carbon skeletal rearrangement can be applied to a variety of alkyl-
and aryl-substituted ones (1) (Table 1). The quantum yields with
1aor 1eat 313 nm using valerophenone as an actinometer7 were
calculated to be ca. 0.1. This rearrangement can be quenched
by a triplet quencher, NaI.8 The substrates without hydroxy group
at the allylic position such as 2-methyl-1-phenyl-2-penten-1-one
did not give any rearrangement product2 under the same reaction
conditions. This suggests the requirement for the hydroxy group
to weaken the allylic C-H bond.

To clarify the intra- or intermolecular courses, the crossover
experiment was examined between1c and 1f (Scheme 2).
However, bimolecular products (2c′ or 2f ′) were not observed
at all, thus indicating that this reaction proceeds in an intramo-
lecular fashion.

To gain a deeper insight into the mechanism, we next examined
the methyl- and silyl-protected substrates3cand5a, respectively

(Scheme 3). After irradiation of3c for 6 h, the rearrangement
product4c9 and the resultant 1,4-dicarbonyl compound2cwere
isolated by silica gel chromatography in 68% combined yield.
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Table 1. Rearrangement ofR,â-Unsaturated Carbonyl Compounds
1a

substrate1 R1 R2 2 (% yield)

a Me Ph 53
b p-MeO-Ph 41
c p-Cl-Ph 66
d Ph Ph 54
e Me 62b
f Et 50c

a Irradiated for 6 h in 0.01 M benzene solution with high-pressure
mercury lamp.b Irradiated for 4 h.c Irradiated for 2 h.
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When 5a was irradiated for 5 h, siloxycyclopropane6a10 was
obtained. Indeed,6a gave the 1,4-dicarbonyl compound7a11 in
quantitative yield after treatment with tetrabutylammonium
fluoride (TBAF).
On the basis of these results, the hydroxymethylenecyclopro-

panol (A) is shown as the common intermediate as follows
(Scheme 4): (1) rarely precedented 1,4-hydrogen abstraction12

takes place by the assistance of allylic hydroxy group in the
photoexcited state of carbonyl compounds;13 (2) cyclopropanol
(A) is formed through coupling of the dihydroxytrimethylen-
emethane14 (B) thus generated; (3) The rearranged products2 are
eventually obtained by double tautomerization of enol and
cyclopropanol portions inA.
In summary, we have reported the new type of photochemical

carbon skeletal rearrangement ofR,â-unsaturated carbonyl com-
pounds to 1,4-dicarbonyl compounds. This transformation can
be regarded as the consequence of high level of control over
photochemical pathways by the introduction of an allylic alcohol
“functionality” in the carbonyl substrates.
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(JC-H ) 162.6 Hz), 39.5 (JC-H ) 158.9 Hz), 59.4 (JC-H ) 182.0 Hz), 126.9,
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